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The ar t ic le  desc r ibes  the relat ion between the cutoff of the long- t ime sect ion of the re laxat ion 
s p e c t r u m  and the s h e a r  r a t e  for  the case  of continuous deformat ions .  The cor respondence  be-  
tween the amplitude of the ra te  of cyclic deformat ions  and the deformat ion  ra t e  was de te rmined  
for  the case  of continuous deformat ions  in s ta t ionary  flow. 

T h e  influence of cyclic  deformat ions  upon the v iscoe las t ic  p rope r t i e s  of po lymer  s y s t e m s  has n u m e r -  
ous in teres t ing aspec ts  and has been descr ibed  in s eve ra l  papers  in re la t ion  to po lymer s  with f i l le rs  [1, 2] 
rubbers  [3, 4], and po lymer  solutions [5]. It was shown in [6] that l a rge -ampl i tude  deformat ions  of poly-  
isobutylene change a fundamental  cha rac te r i s t i c  of the po lymer ,  namely  its re laxat ion spec t rum.  The long-  
t ime sect ion of the re laxat ion s p e c t r u m  is cut off. 

In analogy to the concept  of initial v iscosi ty ,  which is independent of the shear  ra te  at smal l  shea r  
ra tes ,  the re laxat ion s pec t rum  which is not affected by deformat ions  will be  t e rmed  initial re laxat ion spec -  
t rum.  In analogy to the concept  of effect ive v iscosi ty ,  which depends upon the shea r  ra te ,  the re laxat ion 
spec t rum affected by deformat ions  will be t e rmed  effective re laxat ion  spec t rum.  It was es tabl ished in [6] 
that, in the case  of cyclic deformat ions ,  the effective re laxat ion s p e c t r u m  is uniquely de termined by the 
deformat ion  ra te  which is equal to the f requency of the v ibra t ions  multiplied by the ampli tude of the defor -  
mations.  A unique cor respondence  of the fo rm log~  = log+ma x + loga  exis ts  between the deformat ion  
ra te  "Ymax and the shea r  r a t e  ~, where  a denotes a constant which depends upon the type of the po lymer  con- 
s idered.  The long- t ime sect ion of the effective re laxat ion s p e c t r u m  r e s e m b l e s  the long- t ime sect ion of the initial 
re laxat ion spec t rum.  The calculat ion of the v iscoe las t ic  c h a r a c t e r i s t i c s  which are  usually de termined in inves-  
t igations employing continuous deformat ions  can be made with the l inear  theory of v iscoelas t ic i ty ,  provided that 
the initial re laxat ion s p e c t r u m  and the dependence of the long- t ime l imit  of the effective re laxat ion s p e c t r u m  upon 
deformat ion ra te  or  shea r  r a t e  a re  known. The effective v i scos i ty  and the coefficient  of normal  s t r e s s e s  we re  
calculated in this fashion. 

The method of [6] has to be checked on a comple te ly  different  po lymer  in o rde r  to genera l ize  the meth-  
od to l inear  po lymers  at t e m p e r a t u r e s  above the vi t r i f icat ion and melt ing points.  Moreover ,  the data of 
Tanner  [7], which had been obtained with polyisobutylene solutions in cetane,  were  used for the gene ra l i za -  
tion. 

A tors ion pendulum and a v i b r a t o r y  r h e o m e t e r  were  used in the m e a s u r e m e n t s  of the dynamic c h a r a c -  
t e r i s t i c s .  The m e a s u r e m e n t s  with the pendulum, which was used in the mode of f r ee ly  attenuated osc i l l a -  
tions, were  made at f requencies  between 0.1 and 1 Hz. The pendulum has been descr ibed  in detail  in [8]. 
The m e a s u r e m e n t s  with the v i b r a t o r y  rheomete r ,  which was operated in the induced osci l lat ion mode, were  
made at f requencies  between 6 and 110 Hz and at var ious  deformat ion  ampli tudes,  as descr ibed  in [6]. All 
m e a s u r e m e n t s  were  made at 194~ 

The complex  dynamic v i scos i ty  7" = ~T _ i~" was measu red  during cyclic deformat ions ,  where  7'  
denotes the rea l  component  or  the so -ca l l ed  dynamic viscosi ty ,  and ~", the imaginary  component.  Measure -  
ments were  made at var ious  deformat ion  ampli tudes  3'o and f requencies  w = 2 ~ ,  where  f denotes the 
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Fig. 1. D Dependence of the absolute va l -  
ue of the complex dynamic v i scos i ty  upon 
the deformat ion ra te  for  var ious  f requen-  
cies  (curve 2) and upon the f requency at 
smal l  deformat ion  amplitudes (curve 1); II) 
dependences of a) the modulus of e las t ic i ty  
and b) the modulus of losses  upon the defor -  
mation ra te  for  var ious  f requencies :  1) w 
= 40; 2) 80; 3) 125; 4) 200; 5) 400. ~ * e x -  
pressed in p; w, in see-l; ~,, in sec-1; G' 
and G", in dyne/cm 2. 

f requencies  of the osci l la t ions.  The ~/0 values  were  used 
to calculate  the deformat ion  ra te  ~ m a x  = 70f. The 77* 
values  were  used to de te rmine  the complex s h e a r  modulus 
G* = ~/* x ir = G' + iG" and its components  {with G' de-  
noting the modulus of e las t ic i ty ,  and G", the modulus of 
losses). 

The effective viscosity ~? = -r/~, was measured along 
with the dynamic characteristics, where ~" and ~ denote 
the tangential stress and the shear rate, respectively. 

"Moplen H polypropylene having an initial viscosity 
~Tmax = 2.5 �9 106 p at 194~ was the main object of the in- 
vestigations. The characteristic viscosity of this poly- 
propylene was 3.8 at 135~ in decalin. Moreover, Moplen 
polypropylene with a lower initial Newtonian viscosity was 
used for test calculations. 

The viscosity values of polypropylene, which had 
been obtained upon continuous polypropylene deformations 
in the s h e a r - r a t e  in terval  between 10 -2 and 100.3 sec -1, 
were  taken f r o m  [9]. 

In our ensuing discussion,  we assume  that the f r e -  
quency is equivalent to the shea r  ra te  in the case  of con-  
tinuous deformat ions .  Apart  f r o m  this,  a quanti tat ive c o r -  
re la t ion  between the complex v i scos i ty  and effective v i s -  
cos i ty  is used, as well  as a quantitative correlatLon be-  
tween the modulus of the losses  and the shear ing  s t r e s s .  

F igure  1, I shows the dependence of the absolute 
value of the complex  dynamic v i scos i ty  upon the de fo rma-  
tion ra te  for  var ious  osci l la t ion f requencies .  The quantity 
177"I is independent of ~/max at each given frequency,  until 

~/max has reached a c r i t i ca l  value ~'lC~ax at which the function I~?*1 = r  becomes  the envelope. F ig-  
ure  1, I shows also the dependence of the absolute value of the complex dynamic v i scos i ty  upon the f r e -  
quency 177"1 = r for  ~max  < "Y~z~ax. The envelope of the curves  I~?*1 = r can be combined with 
the curve  I~?*l = r by t ranspos ing the l a t t e r  curve  along the absc i s s a  by the amount loga  = 1.3. This 
resu l t  can be explained as follows. The c r i t i ca l  amplitudes and deformat ions  7~ r which cor respond  to the 
t ransi t ion into the envelope depend only sl ightly upon the f requency (in the f requency range  considered,  the 
deviations f r o m  ~0 r amount to 9%). Since "Ymax = ~/0 f = "Y0 ~ the values  ~ 0 r ~  can be assumed constant  
in a f i r s t  approximation.  This means  that ~ a x  is propor t ional  to w and the envelope I~?*1 r  must  
be shifted along the abs c i s s a  re la t ive  to the function I11"1 = r or  77(~/)by the amount log~0r /2  7r = loga.  
In teres t ingly  enough, in investigations in which polyisobutylene of low molecu la r  weight was examined, the 
cor responding  shift  along the log '~ma x axis amounted to 1.9. This  means that the quantity a depends upon 
the type of the po lymer .  

F igure  1, II(a, b) depicts the dependences of the components  G' and G" of the complex dynamic mod-  
ulus upon the deformat ion  ra te  fo r  var ious  oscil lat ion f requencies .  Two deformat ion  ranges  can be d i s -  
tinguished on the f igure:  there  exis ts  a region in which the moduli a re  independent of the deformat ion  ra te ,  
and another  region in which the absolute values  of G' and G" dec r ea se  with increas ing ~max" The absolute 
values of G' and G" increase  with increas ing f requency in both regions .  

F igures  2a and 2b depict the f requency dependence of the components  of the complex modulus.  The 
G' and G" values we re  obtained with the tors ion pendulum in the f requency range  10-~176 sec  -1, and 
with the v ib ra to ry  r h e o m e t e r  in the f requency range 101"6-102"6 sec -1. The G" values  at low frequencies  
were  obtained with the flow curve  of polypropylene,  because  the equality v = G" holds for  low shea r  ra tes  
and f requencies ,  provided that we assume  ~ = oJ. It follows f r o m  the G"(w) dependence cons idered  (curve 
1 in Fig. 2b) that the t rans i t ion region f r o m  low frequencies  to higher  f requencies  is not well pronounced. 
Increas ing  f requencies  imply that the values pass  to the h igh-e las t ic i ty  plateau, which is inclined, probably  
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Fig. 2. Frequency dependences of a) the modulus of e las-  
t icity and b) the modulus of losses .  1) Smal l -deformat ion am- 
plitudes; 2) deformat ion- ra te  amplitude ~/max = 10 sec- i ;  3) 
torsion pendulum; 4 and 5) v ibra tory  rheometer ;  6) capi l lary  
v i scos imete r .  G' and G" expressed  in dyne/cm 2, and w, in 
s e e  - 1 .  
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Fig. 3. Initial and effective relaxation 
spec t ra  of polypropylene (the dashed 

. ., , ~ . . . ~  line denotes  the approximation of the 
~ k  L ~ ~ ' k ~ ~  in i t i a l spec t rum;  t h e d a s h - d o t l i n e i n -  

dicates the approximation of the effec-  
t i ve spec t rum) :  1)0.063; 2)0.2;  3) 
0.63; 4)2.0;  5)6 .3;  6)20; 7)63;  8) 
200. H expressed  in dyne/cm2; O, in 

-2 -! o f tg 0 sec.  

due to polydispersion of the polymer .  The modulus of elast ic i ty  f igures (curve 1 in Fig. 2a) were  obtained 
only in the plateau region. The vi t r i f icat ion range was not reached in this par t icu la r  experiment .  The 
vi t r i f icat ion range is situated at higher  f requencies  than we could reach in the presen t  work. Curves 2 of 
Figs.  2a and 2b were  obtained at a deformation ra te  of 10 sec -1. A ra ther  sharp cutoff of the functions 
G'(w) and G'(w) cor responds  to that deformation ra te .  Since loga = 1.3, the curves  of Figs.  2a and 2b 
indicate the components G'(w) and G'(w) of the complex dynamic modulus, which are  obtained when a cyclic 
deformation of small  amplitudes is super imposed on a continouus deformation with a shear  ra te  of 200 
sec -I. 

The method of Ninomiya and F e r r y  [10] was used to calculate the initial relaxation spec t rum Hin(O ) 
f rom the functions G'(w) and G"(w) which r e f e r  to the smal l -ampli tude region of amplitude-independent G' 
and G". The initial relaxat ion spec t rum is represen ted  by the solid curve running through the filled c i rc les  
in Fig. 3. The effective relaxation spec t rum He(O ) was calculated f rom the data which are  represented  in 
Figs. 2a and 2b by curves  2, in analogy to the calculation of the initial spect rum.  The effective r e l axa -  
tion spec t rum is represen ted  by the steep solid curve which runs through the filled squares .  It follows 
f rom what has been said above that the effective relaxation spec t rum must be equivalent to the polymer  
spec t rum in the case of s ta t ionary flow, when the shear  ra te  is 200 sec -I. 

The initial re laxat ion spec t rum is re la ted to the initial Newtonian viscos i ty  ~max = l!m~? by the ex- 
T - 0  

press ion  
r 

~lmax = S Hi~ (0) dO. (1) 
0 

The initial relaxat ion spec t rum was approximated so that Eq. (1) rendered  a spec t rum corresponding to 
the g rea tes t  exper imenta l ly  determined Newtonian viscosi ty.  The approximation is represented  in Fig. 3 
by two sections of s t ra ight  lines denoted by dashes.  These  lines cha rac te r i ze  the long-t ime and average-  
time sect ions of the spect rum.  The shor t - t ime  section of the spec t rum was not obtained, because the func- 
tion G'(w) was not given on the high-frequency side. The approximated initial relaxat ion spec t rum can be 
descr ibed by the following functional dependences:  

{ 1,6.1070 -1-7~, 101-a4~O ~ ]01-~; 
Hi~ = (2) 

1.2.10aO -~ 0 ~ 0 < =  l01-34. 

The Vmax value calculated f rom the approximated spec t rum differs by 20% f rom the exper imenta l ly  
obtained value. This approximation could be considered adequate for  the purposes of the presen t  work. 
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Fig. 4. I) Dependence of the p a r a m e t e r s  of the conditions de-  
te rmining  the cutoff of the long- t ime pa r t  of the effect ive spec -  
t r a  and II) dependence of the effective v i scos i ty  upon the shear  
ra te  and dependence of the absolute value of the complex dy-  
namic v i scos i ty  upon the f requency at smal l  deformat ion a m -  
pli tudes.  1) Tors ion  pendulum; 2, 3) v ib ra to ry  rheomete r ;  4) 
cap i l l a ry  v i scos ime te r ;  the solid line denotes exper imenta l  
data, and the dashed line, calculated resu l t s .  H 0 expressed  in 
dyne/cm2; 01, in sec; gt, in p; and "~ and w, in sec  -1. 

Let us de te rmine  the long- t ime sect ions of the cutoff or  effective re laxat ion spec t r a  for  var ious  ~ values;  
we base  our considerat ions  upon the above re la t ion between ~ and ~/max. The long- t ime sect ion of the 
function He(O ) was approximated by a power function with a constant  exponent (equal to -1 .75) ,  [. e . ,  with 
the s ame  exponent as the long- t ime sect ion of the initial spec t rum.  The approximat ion for  var ious  ~ va l -  
ues is indicated by the inclined dash-dot  lines which in te r sec t  the initial re laxat ion s p e c t r u m  at points de -  
t e rmined  by the re la t ion log (1/(9) = log w = log~/. The cutoff l imi ts  of the He(O ) spec t rum at long r e l axa -  
tion t imes  are  given by points at which the function H on the dotted lines (Fig. 3) becomes  equa l  to the 
sma l l e s t  H value for  the approximated initial re laxat ion spec t rum (unfilled c i rc les ) .  Let us denote the 
longest  re laxat ion t imes  of the cutoff re laxat ion s p e c t r a  by O1, and the re laxat ion t ime cor responding  to the 
in tersect ion points of the inclined dash-dot  lines with the initial approximat ion spec t rum,  by O 2. The 
equation of the s t ra ight  lines which descr ibe  the long- t ime sect ion of the effect ive re laxat ion spec t r a  is 
logH(O) = logH0( ~ - 1.75 logO(~/). The approximation of the effect ive re laxat ion s p e c t r a  can be s ta ted in 
the fo rm 

H e =  / H~ 02<0 < O , ;  (3) 
[ 1.2.10s0 -~ 0 < 0 < 0 2  . 

The functions H0(5, ) and O1(~' ) are  shown in Fig. 4, I. The O 2 values sa t i s fy  the condition H0(5,)O -1"r5 = 1.2 
�9 1050-0.a14. 

With p rop e r  considerat ion of the cutoff of the long- t ime par t  of the s p e c t r u m  at increas ing  shea r  ra tes ,  
i. e . ,  with the known He(O) and with Eqs. (1) and (3), we can ca lcula te  the effect ive v i scos i ty  for  var ious  
shear  ra tes �9  Let us d iscuss  the resu l t s  of the calculat ions (see Fig. 4, II). The filled c i r c l e s  indicate the 
effective v i scos i ty  f igures  which were  exper imenta l ly  obtained during continuous deformat ions .  The un- 
filled c i r c l e s  and filled t r iangles  denote the exper imenta l ly  measu red  absolute values  of the complex dynamic 
v iscos i ty .  The filled squares  indicate the absolute values of the complex  dynamic v i scos i ty  measu red  dur -  
ing cyclic deformat ions  with la rge  ampli tudes,  the deformat ion being equivalent to a continuous s ta t ionary  
flow having the shea r  r a t e  200 see - i .  The dashed curve  indicates the ~(~/) dependence which was obtained 
with calculat ions according to the above-desc r ibed  method and with the data displayed in Fig. 4, II, i . e . ,  
when Eqs.  (1) and (3) were  taken into account in the calculat ions.  It  follows f r o m  Fig. 4, II that the cutoff 
which we introduced in our work for  the long- t ime par t  of the s p e c t r u m  can adequately account for  the v i s -  
cous p rope r t i e s  of the po l ym er  under nou-Newtouian flow conditions. The d i sc repancybe tween  the calculated 
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Fig. 5. Universal representat ion of the relaxation time at which the 
effective relaxation spec t ra  are cut off. 1) Polyisobutyiene; 2 and 3) 
polypropylene. O1 and ~?max expressed in dyne/cm 2. 

Fig. 6. Dependence of the effective viscosi ty  of a polyisobutylene so-  
lution in cetane [7] upon the shear  rate (the solid curve re fe rs  to ex- 
per imental  data; the dashed curve,  to calculated values). V expressed 
in p. 

and experimental  "~(7) values in the region of large "~ values can be explained by the importance of the shor t -  
time part  of the spectrum, which we did not determine at the shear  rates  considered. 

For  each cr i t ical  value of the deformation rate and the corresponding frequency, the deformation 
work can be assumed to amount to 

Ecr = 4n'~ [~l*l[7maxJ • "~ 2,4.105 erg/cm 3. (4) 

This deformation work is five times grea ter  than that obtained in the case of polyisobutylene [6]. 

Since @1 cha rac te r i zes  the relaxation time corresponding to the cutoff of the effective relaxation spec-  
trum, we may expect that the function @l(~/) must be a charac te r i s t ic  pa ramete r  of the polymer.  The el(~/) 
dependences which were plotted in l o g - l o g  coordinates with the data of [6] for polyisobutylene and for two 
polypropylenes the initial v iscosi t ies  of which differed by the factor  20, are s traight  lines with identical 
slopes. Coincidence, which can be obtained by appropriately normaliz ing the straight  lines, is of great  
interest.  Coincidence results  when the initial v iscos i ty  is chosen as the normalizing parameter .  With 
this normalization,  the quantity Vmax/@l is an analog to the modulus for a Maxwellian element with the v i s -  
cosi ty Vmax and the relaxation time e I. When we use the concept of a reduced shear  rate,  we can plot the 
function ~?max/Ol = ~(#'0max) as shown in Fig. 5. Coincidence of the functions 7?max/e 1 = ~I,(~/~?max ) for  
the various polydisperse  polymers  indicates that the cutoff of the relaxation spec t ra  of these polymers  ex- 
tends to Maxwellian elements with equal moduli, when the reduced shear  rate [s the same.  The equation 
of the function ~?max/O1 = ~'~?max) can be written in the form: 

o~ = 2.8/7 (5) 

A universal  relaxation spec t rum exists for polydisperse  l inear polymers  [11]. It has been shown in 
the present  work that the cutoff of the relaxation spec t ra  of l inear polymers  occurs  always in the same form 
and as descr ibed by Eq. (5). In other words,  there exists a unique relation between the shear  rate in con- 
tinuous deformations and the relaxation time corresponding to the cutoff of the relaxation spectrum.  This 
behavior  was predicted in [12, 13], and the present  work has established the analytic fo rm of the relation 
between the shear  rate and the corresponding relaxation time for which a cutoff of the spec t ra  is observed. 

Thus, when only the initial relaxation spec t rum of the polymers  is known, Eq. (5) and the relations 
of the linear theory of v iscoelas t ic i ty  can be used to calculate the viscoelast ic  functions for various shear  
rates  and for  s ta t ionary  flow conditions. Tanner ' s  data [7] can be used to check the calculation method. 
Tanner  made his measurements  on a polyisobutylene solution in cetane. The initial relaxation spec t rum 
and the cutoff relaxation spec t ra  were determined in a r a the r  wide interval of shear  rates  by super imposing 
a cyclic deformation with smal l  amplitudes upon the quas i -s ta t ionary  flow of the polyisobutylene solution in 
cetane. The initial relaxation spec t rum which had been obtained by Tanner  is indicated by the solid line in 
the insert  of Fig. 6. The initial spec t rum was approximated and cut off as shown by the dash-dot  lines of 
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the figure. The cutoff and the above relationship~ were thereafter used to calculate the dependence of the 
effective viscosity upon the shear rate (dashed line). This dependence agrees strongly with the experimen- 
tally obtained dependence (solid curve). We note that Tanner's cutoff relaxation spectra result in the same 
dependence of the effective viscosity upon the shear rate. 
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